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ABSTRACT

Although the Thomson scattering cross section of a free eleciron !
is guite small, it leads to detectable scattering of radio waves even at
frequencies thought to be so high, until recently, as to pass through the
ionosphere unperturbed. The body of theoreticai work on the subject of

scattering of the incoherent type has increased rapidly, but the effect of

the earth's magnetic field has not yet been analyzed. In radic wave scattering
the characteristice of 'the frequency spectrum are related to time variations
of electron density in the direction of the ''scattering wave vector,'' which
ie directed perpendicular to the surfaces of constant path length, measured
from the transmitter to the receiver via the scattering element. Since drift
motions of charged particles across magnetic lines of force are restricted
ir the upper ionosphere, we shculd expect the presence of the magnetic field
to have an effect on the spectrum of scattering at least when the scattering
wave vector is directed perpendicular to the field. In fact, it is shown in
our analysis that in this case the spectrum will in the first approximation
consist of lines, if the electrcns can be assumed to gyrate freely in the
magnetic field. The separation of the lines is equal to the electron gyro-

magnetic frequency.

The results of some recent theoretical work indicate that the assumption

T2 o™

of free gyration of electrons probably cannot be made unless both the scale

of scattering and the electron gyro radius are smaller than the Debye length.

An jonized medium tends to remain neutra. over scales larger than the Debye
length, and we show that if at such scales of scattering the ions could be

assumed to gyrate unperturbed, our electron line spectrum would be replaced



by one in which the separation of the lines is equal to the gyromagnetic
frequency of the positive ions. At large scales, however, the effects of
the internal electric fields on the behavior of the charged particles should
be taken intc account, and until this is done in the presence of an imposed
magnetic field, it will not be clear to what extent the ion line spectrum is
smeared by tnese fields. Even if the charged particles could be assumed
to gyrate unperturbed, some smearing of the lines is shown o result if
particles drift through the antenna beam, and alec if the magnetic lines

of force do not lie in the surfaces of constant path length. Curves given
in the paper reveal that even if we started out with a line spectrum, it
would get smeared out quite rapidly as the angle between the surfaces of
constant path length and the magnetic field is increased from zero.

The envelcope of the line spectrum is derived under the assumption
that the spatial distribution of particles is random and that their velocity
distribution is Maxwellian. The results show that if the radius of gyration
of the particles 1s large compared to the scale of scattering, the envelope
is given simply by the thermal Doppler-spectrum curve that woul< have
existed in the absence of any magnetic field. In that case the presence of
a magnetic field causes no change in the total width of the spectrum, although

it should in general lead to its narrowing, if the gyro radii werec small compared

to the scale of scattering.

R




I. INTRODUCTION

An entirely new branch of the field of radic physics was opened by
W. E. Gordon of Cornell University when he made his predicticn1 that
detectable scattering of radio waves in the ionosphere will occur even at
frequencies so high that the characteristic scale of scattering (A/4n for
backscatter) is much smaller thar the electron mean free path.

If the process of scattering is completely incoherent, if all electrons
can be thought to move undisturbed through spatial distances much larger
than the scale of scattering, and if the effects of the magnetic field can be
neglected, then the derivation of {i:e spectrum of scattering can be accom-
plished simply by converting the thermal velocity spectrum of electrons into
the power spectrum of scattering by the concept of Doppler shifts. The
interesting problem of incoherent scattering in the presence of a constant
external magnetic field, which has not been treated previously, will be
analyzed in the chapters to follow. We will find that if the radar beam is
directed normal to the magnetic field, its presence can have a profound
eifect on the spectrum of scattering. We will also find that the gyromagnetic
frequency of the charged particles plays an important role in the whole
problem.

The fundamental idea of the analysis is quite simple. It was first
discussed by the author in a seminar at Cornell in January, 1959. We
assume each electron to gyrate freely abcut a magnetic line of force at
its thermal velocity. The gyration of an electron will have the effect of
modulating the phase of the radiation scattered by that electron. The

spectrum of the received scattered field of each electron will thus consist




of lines with the separation equal to the electron gyromagnetic frequency.
The resultant spéctrum is a superposition of such line spectra. We have
determined this by assuming the spatial distribution of electrons to be
randorm (incoherent scattering) and the velocity distributicn to be Maxwellian
(thermal equilibrium). Ii now appears fairly certain from some recent
theoretical and experimental results that the assumption of a random dis-
tribution and unperturbed electron motion cannot be made at scales of
scatte:ipg_ comparable to, or larger than, the Debye length. For our
analysis to be applicable, it is probably necessary for both the scale of
scattering as well as for the average radius of gyration of the electrons
to be much smaller than the Debye length. However, we will conclude in
Section VIII-B that our results right be useful even at large scales of
scattering, if the mass, and thus also thes gyro frequency, of the positive
ions is substituted for that of the electrons.

t is evident that a satisfactory understanding of the problem of
incoherent scattering in the ionosphere requires a good understanding of
the dynamics of thermal plasma irregularities in the presence of an imposed
magnetic field. It is also clear that much work still needs to be done on
this subject. We hope that a comparison of our theoretical resulis with
experimental data will in some measure facilitate future progress in under-
standing the behavior of plasma irregularities.

The results of this study will be presented as follows. Chapter II
gives a review and discussion of the general problem of the type of scattering
predicted by W. E. Gordon. In Chapter III some expressions are derived
for subsequent use for scattering by moving electrons. In this chapter we
also investigate the effect of an external magnetic field on the forced vibration

of electrons.




In Chapter 1V we derive a line spectrum of backscatter with the
radar beam directed perpendicular te the magnetic field. We also dis-
cuss here the various effects tending to smear the line spectrum. The
envelope of this line spectrum is derived in Chapter V, and is ghown to
be very well approximated by the Gaussian thermal Doppler spectrum
that would have existed in the absence of a magnetic field. Some sample
spectra are given at the end of Chapter V.

Chapter VI shows that it is possible to modify the results of Chapters
IV and V so as to include propagation at any angle to the magnetic field for
both backscatter and forward scatter. It is shown that the spectrum of back-
scatter gets smeared at relatively small deviations from the condition of
perpendicularity. Finally, in Chapter VII the application of our work to
scattering in the ionosphere is discussed.

Except for the strength of the magnetic field, which is in gauss, all

other parameters used in the analysis are measured in the mks system of

units.




II. REVIEW AND DISCUSSION OF THE GENERAL PROBLEM

A. REVIEW

Ag has already been menticned in the Introduction, Gordon recog-
nized in 1958 that the radar-techniques and powerful equipment of today
are sufficient to permit the detection of incoherent scattering by individual
electrons in the ionosphere as well as in the adjacent space. ! 1f scattering
is incoherent, the scattering coefficient o (power scattered per unit power
density incident at the scattering volume, per unit volume of scattering, per

unit solid angle} is given simply by

g = Ng per meter |, (2.1)
e

where N is the electron density per cubic meter. The symbel L denotes
the scattering cross section of a single electron, T, = 7.95 x 10'30 sinzx
square meters, X being the angle between the incident electric field and
the direction of scattering.

A consequence of the approach used by Gordon is the prediction that
the spectrum of backscatter would have a considerable spread due to the
Doppler shifts introduced by the random thermal motion of the electrons.
The spacing .6 , of the points of this spectrum,where the power density has

2

fallen to one-half of its maximum,can in the absence of an imposed magnetic

field be easily shown to be

1
6, = 0.424 § ,!-MT- kilocycles/sec
e

1
= 18.5 ;’T kilocycles/sec , (2. 2)




if A is in meters, and T is in degrees absolute; Me denotes the ratio
of the mass of an electron to the mass of an atom of unit atomic weight.

W= now know that Equation (2. 1) holds whenever the distrikution
of the electrons is completely random {irregular) over distances large
compared to the scale of scattering. * For Equation (2. 2) to hold, it must
in addition be true that all electrons can be thought to move in straight-
line paths without collisions. We now also believe that Equations (2. 1)
and {2. 2) should simply be regarded.as special cases of more general
results that apply to scattering of radio waves by an ionized gas in thermal
equilibrium.

In the search for a more céumplete theory of such scattering, a paper
written earlier by Pines and Bohm3 has been of some importance. These
authors analyze the behavior of electrons in the presence of a uniform smear
of neutralizing positive charge. In Appendix I of their paper Pines and Bohm
derive an expression for <I plz.lz> for the isotropic case, where p-lz is
the spatial Fourier component with the vector wave number -1: of the electron
density distribution. {Triangular brackets denote the probability average.)
Since the electron density distribution is isotropic, the resuit, given in
Equation (2. 3), depends only on the magnitude, k, of the wave number:

Nk&

(1/zD)2 +k

2
<|pk| > = = (2.3)

* A random distribution of particles exists, for instance, within a box
containing a gas of neutral molecules in thermal equilibrium. The
essential idea here is that if a box of volume V is divided into sub-
volumes of size AV,, a particle will have the probability AV./V

of being found in the ith sybvoiume. If the gas consisted of electrons
alone, it is intuitively obvious that the Coulomb forces of interaction
would tend to oppose the creation of a random distribution, tending to
smooth out the irregularities.




where lD is the so-called ''"Debye length.'!
It can be seen from Villars, Weisskopf4 or our Equation (3. 14)
that in isotropic scattering, the scattering coefficient ¢ is, for unit

volume, given simply by
> . {(2.4)

In Equation (2.4) K denotes the magnitude, (4n/\) sin8/2, of the
""scattering wave vector!'' E . The vector K is in the direction of

the sum of two unit vectors: one drawn in the direction of incidence,

i.e., from the transmitter toward the element of scattering; the other

in the direction opposite to that of scattering, i.e., from the receiver
toward the element of scattering. The ''scattering angle'' 6 is measured
between the direction of incidence and that of scattering (Figure 3-1).

Use of Equation (2. 4] then shows that the density-fluctuation formula (2. 3)

derived by Pines and Bohm3 leads to the scattering coefficient

2
(411' . 9)
— 8in
= ¢ N A Zz

2 2
e 1 ) 4m . ®
(‘z_ * (T sin >

D/ \

{2.5)

For lD >> m the preceding equation reduces in fact to Equation
(2.1), i.e., to ¢ = ¢ N. On the other hand, for [_ << — >
e D 47 sing/2

Equation (2. 1) would according to Equation (2. 5) have in addition the re-

duction factor,

4l sin =
f = ]i . (2. 6)




At backscatter from the ionosphere, with ZD = 0.25 x 10"2 meters,

we have for X\ = 7 meters

f1 2 x10°° or -47db. (2.7)

Let us keep the preceding considerations in mind and proceed with the
historical review.

Soon after Gordon's prediction of detectable incoherent backscatter
from the ionosphere, Bowles was able to confirm the existence of such
scattering experimentally. 5, 6 According to Bowles the results appeared
to confirm the scattering coefficient [ Equation (2.1)_] of the incoherent
scatter within t 3 db. On the other hand, the width of the observed
spectrum of backscatter apparently was much narrower than that of the
electron thermal Doppler spectrum of Equation (2.2). Needless to say,
if the reduction factor f1 of Equation (2. 6) had been applicabie, Bowles
would have been unable to detect any backscatter at all at his frequency
of 41 Mc/s.

To explain the observed results, Bowles proposed ''a modified
theory of incoherent scatter.'' He pointed out that although it is true that
at scales larger than the Debye length the plasma tends to be electrically
neutral, in the ionosphere the positive charge does not consist of a uniform
smear. Instead, thermal motions of the positive ions create irregularities
in ion density which may also exist at scales much larger than the Debye
length, since such large-scale fluctuations of icn density will be neutralized
by corresponding irregularities induced in the electron density. It is the
consequence of this idea that at large scales of scattering the width of the

spectrum of scattering is determined by the thermal motion of the positive




_ions and not of the electrons (see Section VII-B). In his report6 Bowles
also derives an expression for the spectrum of backscatter that is narrower
by about a factor of w than the ion thermal Doppler spectrum that is ob-
tained by evaluating expression (2. 2) for the atomic weight Mi of the
positive ions. It should be pointed out, though, that in speaking of a
""'modified theory of incoherent scatter, ' Bowles apparently assumed

that the scattering coefficient ¢ = ¢ N should continue to apply without
e

any modification.

A contribution to the problem at hand was made by Kahn, 7 although
he was not directly concerned with the scattering of radio waves. Kaha
derived formulas for both charge and electron density fluctuations in an
ionized gas consisting of electrons and discrete positive ions which carry
a multiple q of the electronic charge. Kahn'e results show that when the
scale of scattering, \/{4w sin6/2), is much smaller than the Debye length
ZD , the scattering coefficient ¢ = o, N of Equation (2. 1) holds. On the

other hand, if the scale of scattering is much larger than the Debye length,

¢ = —3— ¢ N . (2.8)

According to Equation (2. 8) the scattering coefficient of a gas consisting of
electrons and singly charged positive ions would, at large scales of scattering,
be reduced by a factor of two to 3 7 N. It is interesting that the scattering
coefficient should depend on the multiplicity of charge of the positive ions.
We should also note that Equation (2. 8) does not depend on the mass of the
positive ions.

In his analysis of the scattering of radio waves by an ionized gas in

8
thermal equilibrium, Fejer not only obtains a general formula for the

-10-




scattering coefficient, but also derives expressions for the spectra of
scattering. His analysis is for a gas consisting of neutral particles,

electrons, and singly charged positive ions, and leads to the scattering

coefficient,

i

1+2 D —_—

N/{(4w s8in6/2) |

e l ) 2
2+2 2

N/{(47 8in 6/2)

(2.9)

Evidently

(¢ N for — M << 1
Te °T G7sing/2 D

%0’ N for A >> 1
e

\ Trsme/z D

Fejer's derivation of the scattering coefficient is an extension of the
analysis of Pines and Bohm discussed earlier. In the limit of short

and long wavelengths Kahn and Fejer predict the same scattering co-
efficient, if the neutralizing ions are singly charged. The reduction

in the intensity of both the ion and the electron density irregularities

of scales comparable to or larger than the Debye length is brought about
by electrostatic fields that exist in the plasma. These fields have the
greatest effects at the largest scales. They make the elect‘;on deneity
deviations follow the ion dengity deviations, but at the same time they
also cause a slight smoothing out in the irregular distribution of both the

ions and the electrons.

AP




To derive the specira, Fejer makes use of the idea that since the
amplitude of the wave scattered in a given direction is determined by the
spatial Fourier component with the scattering wave number K of the
electron density deviation 6N, the time variation of the scattered ficld
may be determined from the time variation of that Fourier component.
Fejer derives expressions for spectra for four special cases that cover
the high and the low collision-frequency approximations for scales of
scattering boeth long and short compared to the Debye length. Probably
of greatest interest is his result that the 3-db loss of the scattered power,
predicted for scattering at the large scales, i.e., when \ >> 4xn lD sin -g ;
is mainly at the expense of the power scattered near the frequency of the

incident wave. This leads to the somewhat surprising result that the spectrum

should assume the shape of a shallow saddle for

. B 2 . . B
41rlD smz- << A\ << 7 Lmi sin ~ ,

where lmi is the mean free path of the positive ions. The dip of this

spectrum is centered at the transmitted frequency, and two slightly raised

shoulders are placed symmetricaily about the dip. (See the solid curve

of his Figure 1). As a result of the dip, the half-power width of this spectrum

is larger by about a factor of twe than that of the ion thermal Doppler spectrum.
At a colioquium, E. Sa.lpeter9 of Cornell presented some theoretical

results that agree with those of Fejer. Recently a manuscript has come to

our attention in which Dougherty and Farley10 of the Cavendish Laboratory

derive similar results by a different method. Also, the general expression

of the scattering coefficient has been derived by Renau by a relatively simple

.1 . c
analysis. The existence of some spectral content at the frequencies

-42-




fT + nf , where {f is the plasma frequency of the electrons, has now
p

p
, 10,12
been predicted by several authors. 2o 20

We should finally like to point out that backscatter of the incoherent
fype has lately been observed at the Lincoln La.'l:»c»ra.tory13 at 440 Mc/s.
Their spectra have an approximate width appropriate to the thermal motion
of the ions, and in addition even give an indication of the existence of a

rather flat top such as that predicted by Fejer, Salpeter, and Dougherty

and Farley.

B. DISCUSSION

At least three approaches have been used to attack this problem.
We hope in this section to add to the understanding of the problem by
discussing the similarities as well as the differences of the various
approaches.

First of all, there is general agreement that it is only the scattering
by electrons that is of any importance, the positively charged particles
being too heavy to scatiter appreciably. Furthermore, everyone also seems

to agree that the electrons can be assumed to scatter independently, i.e.,

the reradiation process of any one electron can be assumed to have no eifect

on any of the other electrons (single scattering by electrons). The assumption

that electrens scatter independently does not mean that the process of
scattering is incoherent, i.e., that the scattered wavelets of the individual
electrons can be added directly in terms of power, nor does it mean that

no mutual effects (such as Coulomb forces ) exist betweer the charged parf'icles.
We list the three approaches used in analyscs of single scattering by electrons

in what we think is their decreasing order of generality:

-43-




i) Scattering by individual electrons;
ii) Scattering by irregularities in electron density; and
iii) Incoherent scattering by individual electrons.
Approach (i) is the most general of the three. In this approach
the total scattered electric field at time t is written as a sum (or integral)
cver the elementary wavelets contributed independently by all the electrons
of the scattering volume. It will be shown in Chapter III that for linear

polarization we have the expression

E
o
E(t) = ¢ ==
&

® N

Z cos {th + ¢i(t)} , (2.10)

i
where
¢ is the scattering cross section of a single electron,

E is the amplitude of the electric field incident at the scattering

volume;

w _is the radian transmitted frequency; and

"

is the distance of the scattering volume.

What makes the general method (i) very difficult is the fact that in order to
determine the phase angle ¢ (t) of the radiatinn received at time t from
1

the itP

electron, we would need to know the trajectory of each electron in
space-time.

Approach (ii) of scattering by irregularities in electron density is
obtained from (i) by making the assumption that at each instant the total
scattered {ield from the average electron density adds up to zero, and that

therefore only the deviations of the electron density from the average have

to be considered. Insofar as this assumption holda, (i) and (ii) should lead

-44-




to the same results if the phase information is kept in the approach of
scattering by irregularities as well.

Approach (iii) of incoherent scattering by individual electrons is
obtained from (i) by making the assumption that each phase angle ¢i(t)
of ¥quation (2. 40} is distributed with equal probability between zero and
2w radians. This assumption about the distribution of phases is equivalent
to the assumption that the spatial distribution of electrons is completely
random (irregular) over distances large compared to a wavelength. If
the phase angles of the wavelets are distributed with equal probability
between zero and 2n radians, then the oscillations can be added directly
in terms of power, because in that case the cross-product terms will
vanish in the expression for the average value of Ez(t) . In connection
with the approach of incoherent scattering the following should thus be noted.

a) Random distribution of electrons is not required over all the
scattering volume. It will, therefore, not be objectionable if the electrons
have a larger probability of being found either in the top, or bottom, part
of the scattering volumme. {We require a slowly varying, not a homogeneous, I
medium. )

b) Whether scattering is incoherent is determined solely by the
spatial distribution of the electrons. If the apatial distribution of electrons
is random, then scattering is incoherent, and ¢ = o-eN. Electron dis-
tribution is apparently random over scales much smaller than the Debye

length.

-15-



III. SCATTERING BY MOVING FREE ELECTRONS

A. DERIVATION OF EXPRESSIONS FOR ELECTRIC FIELD
We will now derive some expressions for the scattered electric
field, which will be used in the succeeding chapters. In this derivation,
let ?1 = -1.'1(t) Le the vector distance from the transmitter T to the
free electron, and ?_) = ‘;Z(t) be the vector distance from the free
(4
electron to the receiver R . The vector w.ve number * is in the
. . . - 7

direction of the incident wave, i.e., k1 = (2mw/\) ({'1/ ri); and .EZ is
in the direction of the scattered wave, i.e., T{Z = (2mw/A) (?Z/ra) (see
Figure 3-1). In all of our work wT denotes the radian transmitted fre-
quency, and A (no subscript) the transmitted wavelength. Let us write
the linearly polarized far-field electric field of the transmitted wave as

- - -

E fw, t -k -1 + ¢)
E =2 . T 1 1
r
1

3.1
q (3.1

-
The amplitude Eo could be a function of the direction of propagation, i.e.,
of T /r .
11

The incident field giving rise to the scattered field that exists at
the location of the receiver R at the time t was the incident field that
existed at the time t - [:rzj/c at the distance [r1] from the transmitter
and Erzj from the receiver. The brackets indicate retarded quantities
and refer to that position of the electron at which the radiation was emitted

that gets to the receiver at precisely the time t. That ig, the scattered

field received at the receiver R at the time t from the electron is due

to the excitation

=

g B eptt-D e CRITdve)
7 r,]

1

-16-
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This can be written in our vecter notatior as follows:

E, tfet-CEJ-CFI-CRD-0F, 0+ 8)

(3.2)

The electric field of Equation (3. 2}, acting on the electron, gives rise to the
acceleration of the electron
E.J E iogr -Ck J-0F, 3-0%,3-0F,J+ 0 }

3= -e rn1 =—§—1 - e
Cx,]

H

(3.3)

The far-field electric field of an accelerating particle of charge q

is given by14

E = —9 1 !—,;jx(t?ojxial) ) (3.4)

p——

2 4g e c° ] 2
)

where r is the distance from the particle to the observer and T the
o

unit vector in the direction of the ohserver. In ourcase,expression (3. 4)

becomes
T T
- = 1 2 2 -
E_ = £ =l x{|= xZ2E] . (3.5)
2 4pe o2 [rz:] rs T2 m t
o

Now let x denote the angle between the direction of the retarded
-
incident electric field [E _] and the retarded direction of scattering
1

E—;Zj' Then

X ( T, R
l‘i“ x (|5 x[Ei'_'] = [1-:1] siny [n] , (3.6)
L2 2 -

-, . . . . - - g
where n is a unit vector in the direction of r2 X {r2 x E4 }. (The

unit vector ;I. is perpendicular to -1.'2 and lies in the plane defined by
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-
the two vectors E1 and .;2 .} Let us further observe that

(4%

e p

e2 sin X
- = Twm s8inX = o

, BNER

o N

47 ¢ mc2
o

where ¢ is the scattering cross section of a single electron that appears
e

in Equation (2. 1). Using Equations (3. 3), (3.6), and (3.7) in Equation (3. 5),

we obtain the following expression for the scattered field at the receiving

site at time t:

E_ ifo e -Ck,J-CF,0-0%,7-0F,0+ ¢)
Cx 3Cx ]

4
qQ
O =

E
5 nJ

(3.8)
Since by definition ETci:l is in the direction of [___—;13, and ET(Z:] in the

directicn of l_:;z:l, we have
- - 2
Cx J-CrJ+Ck -0, 0= 55 {Cr, 3+ 0,0} (3.9)
1 1 2 2 N 1 2
80 that Equation (3. 8) could be written simply as

. 2w
E i U% Eo el {th e (Erij + I:rzj) + ¢}

2 e Er1jL.ij

Note that Er1:| +[r2:| is the total path length from the transmitter T to
the receiver R via the moving electron at the time the radiation is emitted
that gets to the receiving site at precisely the time t.

Equation (3.8) can be put in a form that is often used in the scatter

theory. It is easily verified that

-E-; +-l:'.;:

* TR + (X - & T
1 1 2 2 2 (ky - k) - 7,
='iz " TR + K '?1 , (3. 14)
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-
where K = k - k2 is the so-called ''gcattering wave vector'' whose
i i

magnitude is {4w/\) 8inB/2 .
Setting -—122 - TR + ¢ = &, one can write Equation (3. 8) for the
scattered field from the moving electron as

ei {th -[¥K]- If_';i] + 27}

L

E
_
Cr,JCr,0

=
"
@
O e

(3.12)

It should be emphasized that we have only taken into consideration
the acceleration of an electron resulting from the incident electric field.
Cur results show that for such radiation the formulas for moving electrons
differ from those derived for electrons fixed in their equilibrium positions
only by being in terms of the retarded distances [_r 1] and [r 2] instead
of eimply in terms of T, and r

In order to write down the expression for the total scattered electric
field we really do not have to track individual electrons, but can pay attention
to fixed points of space instead, and work in terms of electron density.
The argument is as follows.

A contribution to the signal is received at the time t from a distance
T, from all those electrons that happened to be at that distance within the
beams. of both antennas at the time t - rZ/‘c . Every electron that was at
the distance r2 at the time t - rZ,/c wag given, at that instant, by the

incident electric field, the acceleration,

E i { * -T -% }
= e 1) 1th-1 ri-& 2 T ¢
a:___.-_.__e
mri
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The field at the receiving site® R at the time t resuliting from such an

electron can be written immediately on the basis of our previous work:

s
E i{wt-K--; + @
(o] - T 1

S

H
34

Now let N(F , t- rz/c) denote the spatial electron density, evaluated
1
for the distance r2 at the retarded time t - rz/c . The total scattered

field at the receiver R is then obtained by integrating over the scattering

volume V.

- -ip
- i . .
N(ri,t rz/c) - 1(uT.. K 14.-6) ]
n E e dv
r r o)
1 2

<

(3.13)

According to the theory of scattering, only the deviations 8N of the electron
density from its average value have to be taken into account, so that in the
expression (3.13), N(?i, t- rz/c) could be repiaced by &N (?1, t- rz/c) .
Except for the appearance of the retarded time t - rz/c , Equation (3.13)
is then equivalent to expressions derived previc:;usly4 on the basis of a
macroscopic approach.

It is usually assumed that ri, rz, -12 and p remain practically
constant throughouta volume Vi , which could be a subvolume of the total

scattering volume V. On the basis of the definition of the scattering co-

efficient o given in Section II-A, we would then obtain {rom Equation (3. 13)

We avoid the term ''the received field,'' since no account has been taken
of the pattern of the receiving antenna.
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for the subvolume V_  the scattering coefficient,
1

2
1
c =0q P> )
e V:<’ K,t-rz/c >
where p— is the Fourier component of the electron density fluctuations
defined by
p -y
-iK .
p = SN(T ,t) e 1 av
ey 1 1

If the process of scattering is time stationary, then the ensemble average

of l pE X I does not depend on the time t for which it is evaluated. In

that case

> . (3. 14)

If the distribution of 8N 1is isotropic, then the preceding expression depends
only on the magnitude, (4w/\) sin8/2, of the scattering wave vector R,

and not on the direction of it. Equation (3. 14), derived on the basis of a
microscopic approach for moving electrons, is identical with the expression
of the scattering coefficient that follows from a macroscopic approach. ‘
It should be noted that although Equation (3. 14) applies in the case of an
anisotropic distribution of the electron density deviations &N, it is based
on Equation (3. 3), in which the acceleration of the electron was assumed

to be independent of the direction of the incident electric field. This

assumption will be discussed in the next section.
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B. EFFECTS OF APPLIED MAGNETIC FIELD

In writing Equation (3. 3) we have neglected the effects of an applied

magnetic field on the oscillatory motion performed by an electron under
the influence of the incident electric field. The question thus arises: If a
magnetic field is in fact present, under what circumstances are the formulas
of the preceding section still applicable ?

We should note that in the Maxwell equation for the curl of the magneti

field of the wave,

- :
- = 3D o oE
VxH=J+ﬁ=J+eo‘gt— 5 (3.15)
the oscillatory motion of the electrons enters directly through the current
density T. 1t is well know that in the absence of an external magnetic
field the oscillatory motion of electrons in such that the real and the dis-

placement current terms of the preceding equation can be combined, leading

to
- / o\ oE B
vV X H = eo - —'E— —at— = € %%— B (3. 16) I

where wp is the electron plasma frequency. In the derivation of Equation
(3.16) it is assumed that v2<< w; , where v 1is the electron collision
frequency. The dielectric constant ¢/ € of such a plasma is thus given
simply by the quantity 1 - wlz)‘/w’l?: .

If the imposed electric field is sinusoidal, v2<< wTZ , and an external
magnetic field is present, then the real and the displacement current terma

of Equation (3. 15) can still be combined, but Equation (3. 16) now has to be

written in tensor form as follows:
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2 \
w - jw, w SE
P b p ———
(v x H) L - — 6 ot
W - w w - (w” -w)
T T T b
2 2 ,
+jwb wP Wy _ SE
{v x H) = eo > > 1 e 0 tZ
Y w {w -w) W - w
T T T b
wé 3E,
(v x H)_ 0 0 "ff B
N T

\

In this case the dielectric constant thus assumes the form of a tensor, given
by the expression in the parentheses of Equation (3.47). In the preceding
expression Wy is the radian gyromagnetic frequency eB/m of electrons.

It is easily seen that if both m]i << w; and mz << w;, then the
off-diagonal terms of the tensor can be neglected, in which case Equation
(3.47) reduces to Equation (3. 46), That is, as far as the forced oscillation

of an electron is concerned, the presence of an external magnetic field can

be neglected if

2 2 2

w" <K w , w << w

b T

These inequalities do, in fact, hold at frequencies w,_, used in incoherent

scattering.
C. AMPLITUDES OF ELECTRON OSCILLATION

We saw in the preceding section that the effects of an external

magnetic field on the oscillatory motion of an electron can be neglected
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if wi <<u)2', w2<<w”.

p

of tena and hundreds of megacycles per second used in inccherent scattering,

We will now aiso show that at the frequencies

thz oscillatory motion of an electron is of a very small amplitude. Such a
conclusion will be useful, since it will allow us to picture electrons as
gyrating freely about the magnetic field, with the incident electric field
causing only a small perturbation in such motion.
The far-field power density S of a radar of gain G is given by

8 PT

S = ;—h—z G - (3.18)
where h is the distance to the point of observation, measured along the
center-line of the antenna beam, and PT is the transmitted power. Using

the relation

4w Aeff
G = __)\.z.___‘_ , {3.19)

where Aeff is the effective area of the antenna, one can put Equation (3. 18)
in the form

P_A
T _

S

S = (3.20)

If the electric field of the wave at the point of interest is assumed to be of
the form E = Eo cos th , then S = EE/Z {, where { is the characteristic
impedance of free space, { = 120 w mks units. In that case, use of

Equation (3.20) for S gives

i1
1 P* A%
E = (20)* X
© hx
a*3 =
From w5z = - r-z- E, where T is the displacement of an electron, by
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integration we obtain immediately

3 3
e : Pp A
> (28)
1 r %
2 2
e 2y Fr A
ch 4172 h
.%
-6 i A
1.36 x 10 P2 A
" h

I3

(3. 21)

Using the very large antenna of A% - 300 meters and setting h = 300 km =

3 x 105 meters and P =

as only

For X\ = 0.7 meters (£ 430 Mc/s) we obtain r = 0.95 x 10—6

T

-6
r = 1.36 x 10
o

N

(o]

which is only of the order of the wavelength of visible light.

26 -

10  watts, gives the amplitude of oscillation r

meters,




IV. DERIVATION OF LINE SPECTRUM OF BACKSCATTER WITH RADAR
BEAM DIRECTED PERPENDICULAR TO MAGNETIC FIELD

A. INTRODUCTION

In this chapter we will derive the spactrum of incoherent backscatter
under the assumption that each electron is free to gyrate about the magnetic
field. The beam of the radar is supposed to be directed perpendicular to
the magnetic field.

We will find that under the assumptions made in the analysis, the
spectrum of backscatter will consist of lines, the separation of which is
equal to the gyromagnetic frequency of the electrons. The envelope of this
line spectrum will be derived in the next chapter. In Chapter VI the results
will be extended to propagation at an arbitrary angle to the magnetic field,
including both backscatter and forward scatter.

The results of Chapters IV-VI are strictly valid only if both the scale
of scattering and the gyro radius of the electrons are much smaliler than the
Debye length. According to the discussion given in Chapter VII the results
might, however, constitute a useful {irst approximation even at scales of I
scattering much larger than the Debye length, if in that case the mass (and
thus the gyromagnetic frequency) of the positive ions is substituted for the
mass of the electrons.

It should be stated that in our work all of the received signal is
assumed to be due to incoherent scattering only. We will also assume for
the moment that the magnetic lines of force lie in the surfaces of constant
phase so that any electron drift along the magnet:{c field will produce no
change in the phase of the signal of backscatter. Finally, drift motions I
of the whole medium are assumed to be absent so that our spectra are

centered at the transmitted frequency.
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B. ANALYSIS

According to ihe results of the previous chapter, if an electron is

located near the =z axis and the field incident upon it is taken as

E
E (1) = -~ sin(w_t - kz +4¢) (4. 1)

then the electric field of backscatter at the radar from the electron is

given by
1 E
Egt) = -¢: -;czi sin(wyt - 2k(z] + @), (4. 2)
1
where 0': is the scattering cross section of a single electron. The gquantity

Cz ] is the = component of the retarded position of the electron, i.e., the
z component of that position in which the radiation was emitted that gets to
the radar at precisely t =1t .

Now let the jth electron gyrate freely about the magnetic field at
the distance zOj from the radar at its thermal velocity. It was shown in
Section III-B that if the frequency of the incident electric field is much
higher than both the electron gyromagnetic as well as its plasma frequency,
then the magnetic field has little effect on that component of the electron's
motion that is due to the incident electric field. Thus the forced vibration
of an electron, which we saw to be of an extremely small amplitude, can
be assumed to be perpendicular to the z axis, and the z-component of the

t ]
position of the j h electron is given simply by

z.,(t) =z .+ Rj ein(wbt + p.j) , (4. 3)




B. ANALYSIS

According tc the results of the previous chapter, if an electron is

located near the =z axis and the field incident upon it is taken as

E
Ei(t) = —-z-f— sin(th - kz + ¢) . (4.1)

then the electric field of backscatter at the radar from the electron is

given by
i E
E (t) = -02 —= sin(wt -2kl 2]+ 4 , (4.2)
R e ZZ T
1
where ¢2 is the scattering cross section of a single electron. The guantity
e

[z ] is the z component of the retarded position of the electron, i.e., the
z component of that position in which the radiation was emitted that gets to
the radar at precisely t=1.

Now let the jth electron gyrate freely about the magnetic field at
the distance zoj from the radar at its thermal velocity. It was shown in
Section III-B that if the frequency of the incident electric field is much
higher than both the electron gyromagnetic as well ag its plasma frequency,
then the magnetic field has little effect on that component of the electron's
motion that is due to the incident electric field. Thus the forced vibration
of an electron, which we saw to be of an extremely small amplitude, can
be assumed to be perpendicular to the z axis, and the z-component of the

t g
position of the j h electron is given simply by

z{t) =2z  + R sinf{wt + u) , (4.3
3 oj J b MJ )




where
B ]
wb = Sn_{ is the gyromagnetic frequency of electrons;

Rj is the radius of gyration of the jth electron; and

p  is its phase of rotation relative to some reference.
J

For the retarded position of the electron we have
[ Lz
z it - —
\ c
sz
z (t s 5 ,

where the last expression holds if the thermal velocity of the jth electron

Lz (t)]
J

tfe

is much smaller than c¢. Thus, approximately,
C ' o)

z(t)]=2z _  + R, sindqw -—=1 + .,

J oj J b %

=z + R_sinf(wt+8) , (4. 4)
oj J b j

where 6, = p, - w Zoj
J J b ¢
If Equation (4. 4) is substituted in Equation (4. 2) and the arbitrary
phase angle ¢ is set equal to =, then we obtain for the field of backscatter

at time t reculting from the jth electron, the expression,

E

2
2
J

D i

E_.(t) = i t - ZkR, si t+0) -2k c 4.5
R_]( ) o sxn{wT Kk i s1n(wb j) zoj} ( )
The total field of backscatter at the radar is given by the sum over

all electrons that participate in the process of scattering, i.e., by

e )

E(t) = o . =
Cj z
J

0 N~

sin{th - ZkRj sin(wbt + Bj) + Lllj} , {4.6)
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where we have set -2kz = .
o) J
It should be noted that we are dealing here simply with a case of
phase modulation: the component of the electron's motion perpendicular
to the surfaces of constant phase gives rise to the sinusoidal phase -modula
term -2kR, sin ("wbt + ej) in the expression for the backscattered electric
J

field. Expression (4.6) can be expanded by steps already known to those

acquainted with the theory of frequency and phase modulation. If we assut

Ine
e

2 z, =R z_ = 7, the result can be put in the form (see Appendix
J

E(t)

(4] le

2 R. i (¢
2 N ( -) ( T -)

oo ‘
+ Z (-9)® 7 (2kR)) sin ({w +nw jt +ng + \b.)
n J T b J

n=1 + J
Z 3 (ZkR)sm((u - nw )t - no. +¢) , (4.7)
n=1

where Jn(ZkRj) denotes the Bessel function of the first kind, order n,
and argument ZkRj . According to the preceding expression, the spectral
content of the scattered field i8 locatedat w_ t+ nw , n=0, 1, 2, ...,
where wb is the radian gyromagnetic frequency of the electrons. Note
that in the preceding analysis it has not been necessary to assume the
process of scattering to be incoherent: KEquation (4.7) is based on the
assumption of free gyration of electrons about the magnetic field.

In order to get an expression for the power spectrum of back-

scatter, we will now, in fact, make the assumption that the spatial dis-

tribution of electrons is random. From Equation (4.7) the ensemble
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average of the power at a frequency wT + nwb is proportional to

| .
§§;<Jn(gj) Jn(gi) sin \\(UT + nwb) t 4 an + q;j sin (wT + nwb) t + nei + t!ti >

. 2
= §<Ji(§j) sin ((mT .-j-,nwb)t j—_nej +\bj) >

+ §< Jn(gj) Jn(gi) sin ((wT + nwb) t + nej + q)j) sin ((wT + nmb) t nei + -.pi >
i#i

(4.8)

where we have set £ = 2kR . In writing Equation (4.8) we have already
J J

assumed that the average of all terms involving products of different fre-
quencies is zero.

In the preceding expression the phase angles n86 + ¢ and -nej +
J J J

are determined by both the location of the center of gyration of the jth

particle and also by its phase of rotation. We could thus write

ne +¢ =a  +a  ,
J J PJ r)

where the phase angle a ., is determined by the location of the center of

rotation, and a by the phase of rotation relative to some reference. A
r)

similar expression can be written for -n8 +¢ . We now assume Q'pj and
J J

a to be independent random variables with a uniform probability distribution
r)

between zero and 2rn radians. We also assume the distribution of § = 2kR,
] J

to be independent of that of the phase angles a . and a . In that case the
r)
second term of Equation (4.8} vanishes, and the first term reduces to

3 Z< :° €)> (4.9)
J
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For random distribution the average power density at a frequency

w + nw , or w_ -nw , is thus equalto
T b T b

2
E 2
= o <) _ 4.10

watts per square meter. As before, [ is the characteristic impedance

of free space. If a total of NV electrons participate, then

2
E 2
P =NVg E__‘;T<Jn(g)> . (4. 11)

n e é

Summation over all lines gives the total power density

[0 o} ECZ)
W=P +2 an=Nvu—e—2——7 , (4. 12)
Lz
n=1
since
(e o]
J+ZZJ2=1. (4.13)
o] n
n=1

According to the preceding, < JZ (£)> can also be interpreted as
n

the fraction of the total power contained in both the line at w_ + nw, and
the line at w'I‘ - nwb. It should also be noted that Equation {4.12) yields
the scattering coefficient ¢ = ceN of Equation (2.1). This is what should

be expected, since Equation (4. 12) is based on the assumption that the spatial

distribution of electrons is completely random.

C. DISCUSSION

1. Line Spectrum and the Irregularity Approach
We should f{irst like to point out that if the electrons can be assumed

to gyrate unperturbed about the magnetic field, a line spectrum of backscatter
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would also result in the first approximation, if we locked at the problem
completely from the point of view of scattering by irregularities in electron
density. Let r denote the radial distance from the radar, and let us
assume that the magnetic field vector lies in the surfaces of constant phase.
We can then say that the free gyration of electrons recreates periodically

the electron density versus r; that is, we would have

N(r, t + %‘—)
b

where n =0, 1, 2, ..., and fb is the gyromagnetic frequency of the

electrons. In that case we should expect a signal of backscatter of the

N(r, t) ,

form
E(t) = A(t) cos {w_t + &(t) } ,
I
where
n .
Alt+ I——) = A(t) )
b
and
®{t+ I’L) t §(t) ,
b
for small values of n. As n increases, the preceding two approximations I

become progressively less accurate, if we permit the charged particles to
drift along the magnetic lines of force, which they in fact do., (See the dis-
cussion at the end of the Section C-Z following.) If the expression for E(t)
is expanded and Fourier series expansion used for A(t), cos &(t) and

sin §(t), E(t) can be put in the form of the line spectrum derived in

~-33- |




Section IV-B,

E(t) 2 A cosw t + B sinw t
1 T 1 T

+ A t + B : t
AZ cos(wT + wb) 5 sin (wT t wb)

+ A cos 2 t + B sin{c 2w )t
: (wT t wb) . (wT t b)

where the A's and B's are undetermined constants.

2. Causes of Smearing of Spectral Lines

First of all, smearing of the spectral lines will be caused by any
deviations from the assumed free gyration of the electrons. We know that
in the upper ionosphere the collision frequency of electrons with other
particles is much smaller than the electron gyromagnetic frequency. How-
ever, electron motion can be affected by relatively weak electric fields,
both internal and external. Existence of any irregular electric fields of
scales smaller than the scattering volume would certainly lead to some
smearing of the spectral lines, but it ie not well known how important such
fields are in the upper ionosphere.

Even if the electrons could be assumed to gyrate unperturbed in
the magnetic field , there would still be some smearing of each line. In
ionospheric work it seems quite valid to assume that the lines of magnetic
force have a negligible curvature relative to that of the spherical surfaces

of constant phase of backscatter. Thus, even though the center of the
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radar beam is directed perpendicular to the magnetic field, except at the
center of the scattering volume, a particle drifting along the magnetic field
would have a component of motion either away or toward the radar. If G
is the beamwidth of the radar in radians, then the resulting spreading of

a line because of Doppler shifts is of the order of
< Iv‘ > Q/2
aAf = 2 = ,
A
| q
where <|v|> is the average speed of drift of an electron along a magnetic

line of force. For a Maxwellian gas the relation between temperature and

average speed of particle motion along a line can be shown to be given by

<!v|> - 2kT
™Tm

where m is the mass of the particle in kilograms and k is the Boltzmann

constant, (k = 1.38 x 10_23 joule per degree Kelvin). For electrons

<lv|> = 3.1x 103 Af-’IT meters/sec ;

‘therefore

3
af = 3.1 x 10 Q —’J;f cycles/sec , (4. 14)

if X is in meters. On the other hand, the separation of the spectral lines,

i.e., the gyromagnetic frequency of the electrons, is given by

f = 2.8 x 106 B cycles/sec
b gauss

The spreading given by Equation (4. 14) is thus a fraction,

-3
1.414 x 10 %E (4.15)
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of the line separation. If we use Q2 = \/d, where d is the effective

diameter of the antenna aperture, then Equation (4. 15) reduces to

3

5]

1.41 x 10~ (4.16)

A

B
which does not depend on wavelength. For the values of temperature and
magnetic field to be expected in the vicinity of the earth, this ratio is
quite small for large diameter antennas used in incoherent scattering.

If we were dealing with incoherent scattering by electrons that
had the thermal characteristics of ions of atomic weight M, then the
corresponding fraction would be

3 AMT

47.7 10~ .
* B 4

ion (4.1 i ¢ .1 the factor M/M = 43
Expression (4. 17) is larger than (4. 16) by @ faeise NM, I W
If in Equation (4.17) we set T = 1600°K, B = 0.5 gauss, and A/M = 4
appropriate to the ot ions, then Equation (4. 17) becomes 15.3/d, where

d is the effective antenna diameter in meters. Thus, unless the antenna

diameter is considerably larger than 15 meters, the ion line spectrum would
be smeared simply because in the ionosphere the curvature of the magnetic
lines of force is quite small compared to that of the spherical surfaces of
constant phase of backscatter.

Even if electrons gyrate unperturbed and the magnetic field lies in
the surfaces of constant phase, some smearing of the spectral lines will

occur, because electrons may drift along magnetic lines of force. An electron

drifting along a magnetic line of force will cross the antenna beam. The

amplitude of the radiation received from such a drifting electron will thus

9o



actually be a function of time, varying from zero through a maximum
back to zero again. The spectrum of the signal received frem each
electron is for that reason really not a pure line spectrum as has been
assumed previously, hut is slightly ameared to begin with. This

smearing is of the order of 1/7 cps, where 7 is the time taken by

the electron to cross the beam.
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V. ENVELOPE OF THE LINE SPECTRUM
)

A. INTRODUCTION

The result of the analysis of the previous chapter was a line
spectrum, with the line separation equal to the gyromagnetic frequency
of electrons. We will now derive the envelope of this spectrum. The
main assumption is that the electron velocity distribution is that appro-

priate for a gas in thermal equilibrium.

B. ANALYSIS
1. Distribution of ¢ = 47R/\

It was shown in the previous chapter that the fraction of total power
contained in bath the line at wT + nwb and also the line at w_ - nw_is
equal to the average value of J2 (£) . We will now determine the distribution

n

of £, which we need in an evaluation of <.J'Z (£)> .

n
We should first note that
R Viey v
£ = = SV 0 (5.14)
/47w N/4n o

where V is the linear velocity of a gyrating electron, measured in a plane
perpendicular to the magnetic field, and Vo = wa/4w. We are thus inter-
ested in the distribution of V, which can be interpreted as the magnitude
cf the projections of electron velocities on a plane.

According to the kinetic theory of gaseé, in a Maxwellian gas the
probability that the x component of a particle's velocity is between v

X

and v + dv , that the y component is between v and v + dv

, and
X X Yy Yy Yy
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that the z component is between v and v + dvz, is given by
z z

B & '52'("2 + vy vé)
flv,v,v)dv dv dv =<_..!_) e x Yy z
x ¥y =z x y =z w2

dv dv dv
X Yy z

(5.2)

If in the preceding expression the velocities are measured in meters per

second, then in R
m M
= |z » (5.3)

m is the mass of the particle in kilograms,

Nfes

@
E)

M its atomic weight,

m_ = 1.66 x 1027 kg is the mass of a particle of unit atomic weight
k = 1.38 x 10-23 joule per degree absolute is the Boltzmann constant

T is in degrees absolute.

It follows from Equation {5. 2) by integration over v that the
z

probability of having v between v and vx+dvx, and v between
x x

v and v +dv is

Yy Yy Yy
2 -ﬁz (vZ + vz)
f{lv,v)dv dv = — e x Y dv dv
x Y X y w x Yy
Now let v =V cosB, v =V sin8. The elemental area in the
x Yy
new system is given by V d6 dV. We obtain
5 p2 VZ
_de -
f(V,e)dVde—z-;Zﬂ V e dav

Since © is distributed uniformly and independently between zero and 2w

radians, the distribution of V can be obtained immediately from the
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preceding equation. It is

2
% v

{(V) dV = zpz Ve av (5. 4)

with f given in Equation (5.3). In a Maxwellian gas the magnitudes ci
projections of particle velocities on a plane thus obey th= so-called
""Rayleigh distribution. '

We actually require the distribution of the variable § = V/Vo h
with £ given in Equation (5.1). if V = V°§ ig inserted in Equation (5. 4)

we obtain

_pZ Vz gz
f(£) dg

282 Vi e de
(o]

2
2228 e 5 e

) (5.5)

where

Wy being the radian gyromagnetic frequency of the particle. Insertion of
the constants in the preceding expression gives
2 2

= -5 2 M
a = 1.5 x 10 )\fb-T- 0

where )\ is the transmitted wavelength in meters. But f = 1.525 x 103 % cps,

s

if B is in gauss; therefore

2 =35-—m—=35Y s (56)
where the parameter

A B
meters gauss

MTabs
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will appear often in the work to follow. The symbol M denotes the ritiu
of the mass of the particle involved {electron or positive ion) to the mass

of an atom of unit atomic weight.

2
2. Evaluation of < Jn(g) >
The fraction of total power contained in both the line at w + nw
and W -nw , 0= 0, 1, 2, ..., is given by the average value of J (£),
n

b
i.e., by

2 2
<J (§)> = J (§) £(£) d§ . (5.7)
n n
£%0
Insertion of f(£) from Equation (5.5) gives

(0]

2 2 .2 azgz
<J (§)> = 22 J (€) e d¢ . (5.8)
n n
0
Integrals of the type of that appearing on the right-hand side of Equation (5. 8)
16
have been treated in the theory of Beasel functions. Evaluation of
Equation (5. 8) gives
<°(8)> '
JE> = e I, (5.9)

where I (x) denotes the modified Bessel function of the first kind, order
n

n, and argument x . In Equation (5.9j

1 1 0.01429
X = — = = R (5.10)
2a 70 \.12 YZ

where

B
meters gauss

./MT
abs
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2
3. Approximate Expressions for <J (£)>
n

In order to satisfy the requirements of incoherent scattering in

the upper ionosphere, x turns out to be much larger than unity. We will
now show that for such values of x the envelope of the line spectrum, if
the latter is normalized to unit tctal power, is given approximately by

2
] f-1
. 258 (1/\) A/ T/M
A(f) = —— e , (5.11)
2%

where f’I‘ denotes the transmitted frequency in cycles per second, and

A the transmitted wavelength in meters. We should note that the exponential
of the preceding expression represents precisely the envelope of the power
density curve for incoherent scattering at long mean free paths in the absence

of an external magnetic field.

In a derivation of Equation (5. 11}, we first make use of an asymptotic

16
series for 1 (x), which enables us to write
n
o m 2 2 2 2 2
<Ji(x)> 24 Z (-1) {4n" -1} {4n -3m} ... {4n - (2m-1)"}
2mx = (2x)™ 4" m!

After rearranging, the mth term of N2mx <J2(§) > can be put in the form
n

2\ 2 2 2

-7 L (“ > £ = ot ) 1= = sm )

=i A\m) P el
(5.12)




Note th

W
(g

QO

> m
- Z - = (.‘21_;‘\) . (5.13)
m=0 ’

2
- 2
en/x

th

Comparison of Equation (5. 12) with the m™™ term of Equation (5. 13) shows

that they are approximately equal for (Zm-i)z << 4n2' i.e., for rnz << n

nz/Zx

We will thus have the result that if the series for e converges suf-

ficiently rapidly; i.e., if

2, n .
-n /Zx s m 1 nz\
e DM GV o B
m. x /
m=0
e . Baf .y : P 2
where /] satisfies with sufficient stringency the requirement /) << n ,
then
2
2 . - 2
<J (&)>=-——1—— en/x , (5. 14)
n 2rx
where
X = 0-012429 , y = N ciank Bgauss

Y AN MT '

The requirements for the approximation (5. 14} to hold are considered in

more detail in Appendix II.

We next note that the gyromagnetic frequency of particles of atomic

weight M in a magnetic field of B gauss is given by
3
fb = 1.525 x 10 B/M cycles/sec . {5.15)

In terms of the parameter vy,

”<

.\/-}’I—;i cycles/sec . (5.16)

3
f = 1.525 x 10
b
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We can thus write

2
n
n?/2x  -nZvE/2(0.01429)  C (‘o‘.i%’;)

€ = € = e

et e

2
BE: 1.525 x 10° (1,7) NT/M
) 5-129 1.525 x 107 (1/\) AT/M

) nfb L 2
R 258 (1/\) A/T/M ]

(5.17)

2 2
A curve centered at the transmitted frequency, which for (f —fT) = (nfb)

coincides with Equation (5. 17), is

, ,
f-f
P
) { 258 (1/%) AI’“-:/M} (5.18)

[

Substitution of Equation (5. 18) in Equation (5. i4) then yielda Equation (5. 11).

C. DISCUSSION

It is important to note that in case the spectrum consists of many
lines, its width is given simply by the thermal Doppler spectrum that would
have existed in the absence of any magnetic field. This means that if the
average radius of gyration of the particles ie comparable to or larger than
the wavelength, then the total width of the spectrum is not reduced, even
though the radar beam is directed perpendicular to the magnetic field.
However, as the parameter y = \B/ AIMT approaches infinity, i.e., in
the limit of very small radii of gyration, the spectrum reduces to a single
line that is located at the transmitted frequency. In this case the particles,

like beads on a wire, can only drift along the magnetic lines of force
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parallel to the surfaces of constant phase.

Three sample spectra are reproduced in Figures 5-1, 5-2, and
5-3 (see also Figure 6-3). Note that, as the parameter y is reduced,
the Gaussian Doppler gspectrum becomes an increasingly better fit to the
envelope of the line spectrum. It can be shown that the average radius
of gyration, <R>, is equal to 0.012 x A/MT/B meters. Thus <R>/\ =
0.042/y. It follows that for Figures 5-1 and 5-2 the average radius of
gyration is smaller than the wavelength, whereas for Figure 5-3 the oppesite
is true.

Figure 5-1 is drawn for y = AB/J/MT = 0.124. For a wavelength
of 0.7 meters (430 Mc/s), this value of y is satisfied in the ioncsphere
for electrons somewhere in the height range from 1,000 km to 3,600 km.
For y = 0.069 of Figure 5-2 the corresponding range is from about 2,000
to 4,500 km. However, since in the height ranges mentioned the Debye
length lD is still smaller than 0.7 meters, the actual spectra of back-
scatter from such heights may bear little resemblance to Figures 5-1
and 5-2. ({See the discussion in Chapter VII.)

The relation y = AB/aA/MT = 0.5975 x 10"2, for which Figure 5-3
was computed, would be satisfied for O+ ions at about 200 km for a wave-
length of 1.5 meters (200 Mc/s). The same value of y would apply for
electrons somewhere in the height range from about 7,000 km to 3,000 km,

if a wavelength \ = 0.93 meters (10,000 Mc/s) is used.
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Figure 5-1. Line spectrum for y = AB/A/MT = 0.4124, and thus for
£, = 189 (4/\) ¥T/M. Gaussian Doppler-shift curve
is given for comparison.
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One wing of the symmetrical line spectrum focr vy = 0.5975 x 10~

and thus for f, = 9.14 x (1)) rJT/M cps. The envelope can be
taken to be thalz of Gaussian Doppler spectrum with practically no
error.
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VI. SPECTRUM WITH PROPAGATION AT ANGLE TO MAGNETIC FIELD
(BACKSCATTER AND FORWARD SCATTER)

A. INTRODUCTION

In the preceding two ch.pters, the spectruin of incoherent back-
scatter was analyzed under the assumption that the narrow beam of a radar
is directed perpendicular to the magnetic field. We will show in this
chapter that it is pcssible to modify the results derived previously to include
the general cases of propagation at an angle to the magnetic field for both
backscatter and forward scatter. In order to simplify the analysis the
restriction is placed on forward scatfter that the scattering volume, located
at a great distance from the transmitter and the receiver, is at an equal

distance from both.

B. GEOMETRY
The phase-modulaticn spectrum of the previous chapters was the
result of sinusoidal time variation in total path length in radians from the

transmitter to the receiver via the moving electron. In the case already

treated, this variation is given simply by i

-)\f- R sin(wbt + constant phage angie) . (6. 1)

We will now show that as far as the effects of the rotation of an
electron are concerned, KEguation (6.1) holds ir the general case with
the modification that instead of the actua transmitted wavelenygth \, the

formulas contain the modified wavelength,

\
A o= , .2
1 cosa sing/2 e 2
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where a is the angle between the magnetic field and a plane that is parallel
to the line TR and perpendicular to the plane of propagation, and 6 is

the angle between the direction of incidence and that of scattering (Figure 6-1).
If the electrons are restricted to drift cnly along the magnetic field, then

the Doppler shift results derived for backscatter and no magnetic field have

to be modified by use of another modified wavelength,

1S
‘2 T Ehe sin @/2 ) (6.3)

We begin the derivation of Equation (6. 2) by noting from Figure 6-1

that for an electron that is rotating but not drifting,

| .

iri(t) = rio + R cosﬁ1(t) ,
and

rzml tr, +Rcosp,()

- N
where P is the angle between R and -;1' and ;32 the angle between

1
R and —T‘Z. Thus the total path length from the transmitter to the receiver

by way of the rotating electron is given by

= |‘. .
ty| + t)f =r +r_ +R (cos t) + t . 6.4
: )| 5,00 2 x vy, B, (1) + cos 1)) (6.4)
From Figure 6-1,
- d - -
r = Vi a + z a 5
1o Yy o =z
- d - -
-r =-'2' a + 2 a 5
20 y o z
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R - — -
furthermore, in R = R a +R a +R a , we have

R =R coswbt cos ¢

'}7
R = R sinw t cosa
A
Thus
R 7T R d R i t
R rio ) Coswbt cos¢ + zO s1nwb cosa
cosfP = - = ,
1 l r ' T
1o io
and, since r = r ,
io 20
d .
- R 5 cos«.obt cosd + Rz slnwbt cosa
R COSﬁ = [e)
2 r
ic
Therefore,
z

R(cos{ii + cos ﬁz) 2R —2 cosa sinpt

io

= 2R sing cosa sinw t {& E)
£ b
The same distance in radians would be
47 . B . .
x R sin 3 Cosa smwbt . (6.6)

As we wanted to show, this is of the same form as Equation (6. 1) if in

Equation (6.6) we use the modified wavelength

_ N
)\1 " cosa sin@/2 : (6.2)

Turning our attention next to Doppler shiits, we note thit if an

electron is drifting along the magnetic field with a velocity v, this motion
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will give rise to a Doppler shift
f-f =-R__T (6.7)

where vR is the compeonent of electron's velocity toward the receiver and

vT the component toward the transmitter. But

v. =v =v 8in6/2 = v sina sin@/2 N
R = Vo i / /

and therefore

f - fT = 2 ;{ gina 8in@/2 : (6.8)

At backscatter, in the absence of a magnetic field, the corresponding

expression in the case of an isotropic velocity distribution would be

f-f =2% ) (6.9)

Expression (6.8) is of the same form as Equation (6.9) if in

Equation (6. 8) we use the modified wavelength

A
= . .3
KZ sina 8in@/2 (6.3)

This is what we wanted to prove.

C. MODIFICATION OF LINE SPECTRUM

Let us dispcse of the simplest extension to the results of the
previous chapters first. This is the case of fcrward scatter with the
magnetic field in a plane that is parallel to the line TR and perpendicular
to the plane of propagation, i.e. o = 0. At the magnetic equator, forward

scatter in any direction satisfies this requirement. Here the line spectrum
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stiil applies, but the fraction of power in both the line at w + nw and

b
w__ - nw 1is, instead of Equation (5. 10), now given by
1 b
<7 [(e asn oS I ) , (6. 10)
n 2 n

where

_ 0.01429

YS
and
)N B
- _meters _ gauss . (6.11)

Ye sin 6/2 ”’MT

Here, as before, £ = 47vR/\, and 6 is the angle of scattering.

In order to see how Figures 5-1, 5-2, and 5-3 have to be modified
to apply in thi; case, let us use Figure 5-1 as an example. The lines
shown in that figure were computed for y = A\B/¥MT = 0.124, where \
was the wavelength used in the backscatter experiment. The width of the

line spectrum was approximately that of the spectrum given by

2
] £ =5
258 (1/\) JT/M
e

According to Equation (6. 11), if X\ is the wavelength used at forward

scatter at 6 = 6, a = 0, then the amplitudes of the lines of Figure 5-1
.8 A . .

apply for Ye = {(N/8in 2—) B/NMT = 0.124. The width of the line spectrum

is given by that of the spectrum

f-f
T

258 (1/\) (8in8/2) A/T/M
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With M assumed to be constant, we can thus say the following
about the spectra of for<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>